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Context

EvoEvo project

Living organisms have evolved mechanisms to cope
with complex and changing environments.

Micro-organisms mainly rely on evolution.

Mechanism: Evolvable genome structure.

Application: Subspace clustering (data mining).

Biological Domain In Silico Models Application Domain
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Hypothesis

It is possible to take advantage of an

evolvable genome structure to tackle

the subspace clustering task.
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Clustering

Data objects exist in a space D = {D
1

,D
2

. . . }

Dataset 7! {Cluster} : Data objects in the same cluster
are more similar than objects from di↵erent ones.
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Subspace clustering
[Kriegel et al. ACM TKDD 2009]
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Data streams e.g. [Sim et al. DMKD 2013]

Data objects continuously arriving over time.

Main subspace clustering families extended to data
streams.

Challenges

Single pass algorithms.

On-the-fly clustering.

Dynamic changes in the data stream.
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Evolutionary Algorithms general scheme
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Evolutionary Algorithms applied to clustering

Several evolutionary algorithms for traditional clustering
reviewed in [Hruschka et al. IEEE TSMC 2009].

Few evolutionary algorithm for subspace clustering
(incorporating non non-evolutionary stages).
[Sarafis et al. 2007][Vahdat et al. 2013]

Few evolutionary algorithms for clustering of data streams
[León et al. 2010][Veloza et al. 2013].

No evolutionary algorithms for subspace clustering of data
streams.
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Project outline
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Chameleoclust

Evolvable genome structure.
Variable number of functional and non-functional elements.
Flexible organisation of genes.

Genome structure inspired by Pearls-on-a-string evolution
formalism [Crombach and Hogeweg, 2007].
Bio-inspired mutations (e.g., large rearrangements).

Modify the genes content and the genome structure.

Axis-parallel and Clustering-Oriented.
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Genotype to Phenotype mapping

Genotype: � Phenotype: �
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Genotype to Phenotype mapping

Genotype: � Phenotype: �

This genome structure allows to encode di↵erent number of
clusters described in their own subspaces.
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Mutational operators
Point mutations

Functional $ non-functional (g).

Core-point id (C)
Dimension id (D)

Contribution (x)

Before mutation
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Mutational operators
Large rearrangements: New bio-inspired operators

Deletion

Duplication

Before mutation
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Fitness computation
Assignment Mismatch

St set of normalized data objects observed at generation t.

Assign objects in St to core-points in phenotype �.
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Fitness computation
Assignment Mismatch

Manhattan Segmental Distance [Aggarwal et al. 1999]

dD(a, b) =
P

i2D
|a

i

�b

i

|
|D|
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Fitness computation
Assignment Mismatch

Assignment mismatch E(o, C)

E(o, C) = |DC |·dDC (o,C)+|D\DC |·dD\DC (o,O)

|D|
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Fitness computation

Assign each object o 2 St to the closest core-point C 2 �

Assignment mismatch E(o, C
i

).
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Fitness computation

F(St ,�) = �
P

o2St

min
C2�

E(o, C)
|St |
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Selection

Generation t (order Individuals by fitness: Highest rank ! best):

Exponential ranking selection:

Mutate children ! Generation t+1:
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Evaluating the evolutionary algorithm

Compare Chameleoclust to state-of-the-art algorithms.

Reference evaluation framework [Müller et al. VLDB 2009]:

7 real benchmark datasets:

shape, pendigitis, liver, glass, breast, diabetes, vowel

16 synthetic benchmark datasets with di↵erent:

Nb. of dimensions: D05, D10, D15, D20, D25, D50, D75.

Nb. of objects: S1500, S2500, S3500, S4500, S5500.

Percentage of noise objects: N10, N30, N50, N70.
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Evolution of the organisms

Fitness

10 runs over each dataset.

Mean ± Standard deviation.

Genome size Functional ratio
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Results : Real data (e.g., Shape dataset)

CLIQUE DOC MINECLUS SCHISM SUBCLU FIRES INSCY PROCLUS⇤ P3C ⇤ STATPC ⇤ Chameleoclust⇤

Accuracy max 0.76 0.79 0.79 0.74 0.70 0.51 0.76 0.72 0.61 0.74 0.8
min 0.76 0.54 0.60 0.49 0.64 0.44 0.48 0.71 0.61 0.74 0.71

SubspaceCE max 0.01 0.56 0.58 0.10 0.00 0.20 0.18 0.25 0.14 0.45 0.54
min 0.01 0.38 0.46 0.00 0.00 0.13 0.16 0.18 0.14 0.45 0.49

NumClusters max 486 53 64 8835 3468 10 185 34 9 9 14
min 486 29 32 90 3337 5 48 34 9 9 10

AvgDim max 3.3 13.8 17.0 6.0 4.5 7.6 9.8 13.0 4.1 17 12.4
min 3.3 12.8 17.0 3.9 4.1 5.3 9.5 7.0 4.1 17 10.8

RunTime max 235 2E+06 46703 712964 4063 63 22578 593 140 250 462
min 235 86500 3266 9031 1891 47 11531 469 140 171 252

Algorithms belonging to the Axis-parallel cluster-oriented
family (*).

Competitive performances with respect to other algorithms.

Good compromise between the di↵erent evaluation
measures.
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Results: Real datasets

Average ranks (?)

Ranks of the algorithms regarding di↵erent quality measures
(Accuracy , Subspace CE , F

1

, Entropy , RNIA, Coverage, NumClusters,

AvgDim, RunTime) for the 7 real datasets.

Competitive performances and good compromise.
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Results: Synthetic datasets

16 synthetic datasets.

True number of clusters = 10.

Best quality = 1.

Good compromize between the number of clusters found
and the quality.
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Results: Impact of non-functional tuples

Positive impact of non-functional elements.
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SubMorphoStream

Cluster-oriented subspace clustering of data streams.

More conceptual representation based on tandem arrays.

Bio-inspired operators adapted to changing environments.

Amplification and Deamplification.

Exogenous genetic uptake
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Genotype to Phenotype mapping

Genotype: � Phenotype: �

�: bag of tandem arrays �C,D.
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Genotype to Phenotype mapping

Genotype: � Phenotype: �

Genes in �C,D contribute to core-point C along dimension D
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Genotype to Phenotype mapping

Genotype: � Phenotype: �

Genes are not encoded explicitly.

Assumption: contributions follow a gaussian distribution.
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Genotype to Phenotype mapping

Genotype: � Phenotype: �

| {z }
�C,D = h�sizeC,D, �

mean

C,D , �varC,Di
Joint representation of the phenotype and the genotype.

�sizeC,D: Size of the tandem array (number of genes).

�mean

C,D : Mean contribution: �mean

C
2

,D
2

(core-point locations).

�varC,D: Variance of the contributions.
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Mutational operators
Amplification/Deamplifications

�C,D = h�sizeC,D, �
mean

C,D , �varC,Di

� = h��sizeC,D,
� �mean

C,D ,� �varC,Di
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�var

C,D
|��size

C,D| )

Variance of a sample of normally distributed values.
��var

C,D ⇥
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�var
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⇠ �2
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Mutational operators
Amplification/Deamplifications

Update tandem array: �C,D  �⇤C,D

Update the tandem array size.
�size

C,D
⇤
= �size

C,D + ��size

C,D

Incremental update of the mean of the contributions.
�mean

C,D
⇤ = 1

�size

C,D
⇤ ⇥ (�mean

C,D ⇥ �size

C,D + ��mean

C,D ⇥� �size

C,D)

Incremental update of the variance of the contributions.

�var

C,D
⇤ =

�size

C,D
�size

C,D
⇤ ⇥ (�var

C,D + (�mean

C,D � �mean

k,d
⇤)2)+

��size

k,d

�size

k,d
⇤ ⇥ (��var

C,D + (��mean

C,D � �mean

C,D
⇤)2)
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Mutational operators
Exogenous gene uptake

Genotype Exogenous genetic material
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Mutational operators
Exogenous gene uptake

Genotype Genotype after mutation
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Mutational operators
Exogenous gene uptake

Update tandem array: �C,D  �⇤C,D

Update the tandem array size.
�size

C,D
⇤ = �size

C,D + 1

Incremental update of the mean of the contributions.

�mean

C,D
⇤ =

�mean

C,D⇥�size

C,D+o

0
D

�size

C,D+1

Incremental update of the variance of the contributions.

�var

C,D
⇤ =

�size

C,D⇥�var

C,D
�size

C,D+1

+
�size

C,D⇥(�mean

C,D�o

0
D)

2

(�size

C,D+1)

2
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Fitness computation

Fitness analogous to the one of Chameleoclust.
Assign each object in window St to its closest core-point
C 2 � (Manhattan distance).
Sum of distances between data objects and core-points.
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Selection

(1+�)-ES selection scheme.
1 parental organism.
� children.
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Evaluating the evolutionary algorithm

Compare SubMorphoStream to the state-of-the-art algorithm
HPStream.

2 real benchmark datasets
(Network intrusion and Forest cover).

6 synthetic benchmark datasets.
SynthBaseDyn : Dimensions importance (+).
SynthClusterSizeDyn : Cluster sizes.
SynthFeatureDyn : Dimensions importance (++).
SynthClusterNbDyn : Clusters appearing/disappearing.
SynthDriftDyn : Clusters drift.
SynthFullDyn : All changes at once.
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Evolution of the organisms

Dynamic evolution of the fitness and the genome
structure.

Adaptation to each data stream.
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Results: Real datasets
Network Intrusion dataset

SubMorphoStream is more robust to changes in the stream.
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Results: Synthetic dataset (SynthFullDyn)

Very dynamic data stream:
Clusters appearance and
disappearance.
Clusters drifting.
Cluster sizes.
Dimensions importance.

SubMorphoStream exhibits
better cluster identification.
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Results: Synthetic datasets

Accuracy Subspace CE
HPStream SubMorphoStream HPStream SubMorphoStream

SynthBaseDyn 0.999± 0.004 1.0± 0.0 0.3± 0.043 0.617± 0.099
SynthClusterSizeDyn 1.0± 0.0 1.0± 0.0 0.318± 0.045 0.605± 0.101
SynthFeatureDyn 1.0± 0.001 1.0± 0.0 0.426± 0.076 0.597± 0.106
SynthClusterNbDyn 0.843± 0.099 0.992± 0.044 0.488± 0.142 0.685± 0.104
SynthDriftDyn 0.452± 0.122 1.0± 0.0 0.105± 0.084 0.716± 0.035
SynthFullDyn 0.398± 0.133 0.997± 0.019 0.078± 0.088 0.706± 0.047

Not significantly di↵erent results.

Significantly higher results.

Significantly lower results.
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EvoMove System.
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EvoMove System.

Dancer(s)
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EvoMove System.

Dancer(s)

Chameleoclust 
modifed version
(KymeroClust)
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EvoMove presentations.

Tested by professional dancers (Anou Skan company)

Presented in 8 performances in dance festivals: Meute
performance by the Désoblique dance company.

Promising feedback from users (Qualitative appreciation).
Feel real interaction with the system.
Systems reacts to changes in the movements.
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Conclusions

Hypothesis

It is possible to take advantage of an evolvable genome
structure to tackle the subspace clustering task.
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Conclusions

Hypothesis

It is possible to take advantage of an evolvable genome
structure to tackle the subspace clustering task.

Conclusion

Incorporating knowledge from evolution:

Encode di↵erent clusters in their own subspaces.

Adapt to di↵erent datasets and dynamic data streams.

Require minor parameter tuning.

Competitive results with respect to the
state-of-the-art techniques.
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Perspectives

Apply: Use SubMorphoStream with the EvoMove
application.

Understand: High degree of freedom ! gains in terms of
quality and capacities to evolve.

Explore: Potential benefits of the population structure
(ensemble clustering, temporality).
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Window models e.g. [Sim et al. DMKD 2013]
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Window models e.g. [Sim et al. DMKD 2013]

Landmark window.

Sliding window.

Fading window.

At current time T objects are weighted according to their
time stamps t (fade exponentially).
weight(o

t

) = 2��⇥(T�t), �: fading parameter.

Tilted time window.
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Window models e.g. [Sim et al. DMKD 2013]

Landmark window.

Sliding window.

Fading window.

Tilted time window.

Global picture of the data stream.
Fine granularity for recent data and coarse scale for old
ones.

. . . , o
n�32

, . . . , o
n�16

, . . . , o
n�8

, . . . , o
n�5

, o
n�4

, o
n�3

, o
n�2

, o
n�1

, o
n

.
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Characteristics of Clustering Evolutionary Algorithm
[Hruschka et al. 2009]

Genome structure

Binary, Integer and Real encoding.

Cluster memberships, medoids or centroids are
encoded.

Fixed and variable number of clusters.
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Characteristics of Clustering Evolutionary Algorithm
[Hruschka et al. 2009]

Fitness functions

Algorithms with fixed number of clusters:
Sum of intra-cluster distances.
Clustering-Oriented family.

Algorithms with variable number of clusters:
Di↵erent coe�cients (e.g., Silhouette Coe�cient).
Multi-objective fitness function.
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Characteristics of Clustering Evolutionary Algorithm
[Hruschka et al. 2009]

Selection schemes

Proportional selection scheme.

Elitist variants.

Tournament selection.

(µ+ �)-ES.
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Characteristics of Clustering Evolutionary Algorithm
[Hruschka et al. 2009]

Mutational operators

Cluster-oriented and non-oriented operators.

Guided and not-guided operators.
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Evolutionary Algorithms applied to clustering

Nocea [Sarafis et al. 2007]

Cell-based approach.

Rule-based integer encoding.

Variable number of clusters.

Subspaces produced a-posteriori.

S-ESC [Vahdat et al. 2013]

Density-based and Clustering-oriented approach.

Multiobjective optimization.

Two populations.

Rely on a first non-evolutionary stage.
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Evolutionary Algorithms for clustering of data streams

Scalable-ECSAGO [León et al. 2010]
ESCALIER [Veloza et al. 2013]

Clustering-oriented family.

Sliding window.

Variable number of clusters.

No subspace clustering of data streams based on
Evolutionary Algorithms.
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Fitness computation
Assignment Mismatch

St set of normalized data objects observed at generation t.

Fitness at generation t over a sample St ✓ S
Assign objects in St to core-points in phenotype �.

o
1

, o
2

, . . .

S1

. . . . . . . . .

S2

. . . , o|S|, o1, . . .
St

. . . , x|L|, . . .
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KymeroClust

Main features

Extract core principles from Chameleoclust

Abstract genotype-phenotype joint representation.

Simple bio-inspired operators (genes
duplication/divergence) using data objects

Results summary

Competitive w.r.t. state-of-the-art algorithms.

Better results in shorter runtimes.
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Selection

Generation t:

Ordering individuals by fitness (Highest rank ! best)

Exponential ranking selection:

Generation t+1:
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Selection

Generation t:

(1,�)-ES selection scheme:

Generation t+1:
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Time complexity Chameleoclust

N: Number of individuals.

D: Dimensionality.

!: Number of objects in the sample.

|�|: Genome size.

L
m

: Maximal genome size reached during the
rearrangement step.

Fitness computation complexity

O(N ⇥ |�|⇥ (D ⇥ ! + ln(|�|)))

Reproduction operations complexity

O(N ⇥ (ln(N) + |�|+ |�|⇥ L
m

+ L
m

))
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Time complexity KymeroClust

�: Number of children.

D
max

: Dimensionality of the dataset.

NbCenters: Number of core points.

!: Number of objects in the sample.

Complexity

O(�⇥ ! ⇥ NbCenters ⇥ D
max

)
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Time complexity SubMorphoStream

K : Number of core-points.

D: Dimensionality.

�: Number of children.

⌘ : Number of evolution generations per data object.

!: Genome size.

Reproduction operations complexity

Exogenous genetic uptake: O(�⇥ ⌘ ⇥ (K + D))

Amplification: O(�⇥ ⌘ ⇥ D ⇥ K )

Fitness computation complexity

O(�⇥ ⌘ ⇥ ! ⇥ D ⇥ K )
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