Subspace clustering on static datasets and dynamic data streams using bio-inspired algorithms

Sergio Peignier Supervisors: Christophe Rigotti and Guillaume Beslon

Université de Lyon INSA-Lyon, CNRS, INRIA LIRIS, UMR5205 F-69621, France

Context

It is possible to **take advantage** of an **evolvable genome structure** to tackle the **subspace clustering** task.

Outline

• Subspace Clustering

- Clustering of data streams
- Evolutionary Algorithms
- 2 Algorithms and Results
 - Chameleoclust
 - SubMorphoStream

3 Application

• EvoMove: Musical personal companion

Outline

Subspace Clustering

- Clustering of data streams
- Evolutionary Algorithms
- 2 Algorithms and Results
 - Chameleoclust
 - SubMorphoStream

3 Application

- EvoMove: Musical personal companion
- ④ Conclusion and perspectives

• Data objects exist in a space $\mathcal{D} = \{D_1, D_2 \dots\}$

- Data objects exist in a space $\mathcal{D} = \{D_1, D_2 \dots\}$
- Dataset → {Cluster} : Data objects in the same cluster are more similar than objects from different ones.

Subspace clustering [Kriegel et al. ACM TKDD 2009]

Subspace clustering [Kriegel et al. ACM TKDD 2009]

- Dataset \mapsto { (*Clust*₁, *Subspace*₁), (*Clust*₂, *Subspace*₂), ... }.
- Different clusters may be defined in different subspaces.

Subspace clustering families [Kriegel et al. ACM TKDD 2009]

Subspace clustering families [Kriegel et al. ACM TKDD 2009]

Outline

1 Introduction

- Subspace Clustering
- Clustering of data streams
- Evolutionary Algorithms
- - Chameleoclust
 - SubMorphoStream

3 Application

- EvoMove: Musical personal companion

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- On-the-fly clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

- Data objects continuously arriving over time.
- Main subspace clustering families extended to data streams.

- Single pass algorithms.
- **On-the-fly** clustering.
- Dynamic changes in the data stream.

Outline

1 Introduction

- Subspace Clustering
- Clustering of data streams
- Evolutionary Algorithms
- - Chameleoclust
 - SubMorphoStream

3 Application

- EvoMove: Musical personal companion

Evolutionary Algorithms general scheme

Evolutionary Algorithms applied to clustering

- Several evolutionary algorithms for traditional clustering reviewed in [Hruschka et al. IEEE TSMC 2009].
- Few evolutionary algorithm for subspace clustering (incorporating non non-evolutionary stages). [Sarafis et al. 2007][Vahdat et al. 2013]
- Few evolutionary algorithms for clustering of data streams [León et al. 2010][Veloza et al. 2013].
- No evolutionary algorithms for subspace clustering of data streams.

Project outline

Project outline

Outline

1 Introduction

- Subspace Clustering
- Clustering of data streams
- Evolutionary Algorithms
- 2 Algorithms and Results• Chameleoclust
 - SubMorphoStream

3 Application

- EvoMove: Musical personal companion
- ④ Conclusion and perspectives

Chameleoclust

- **Evolvable** genome structure.
 - Variable number of functional and non-functional elements.
 - Flexible organisation of genes.
- Genome structure inspired by **Pearls-on-a-string evolution** formalism [Crombach and Hogeweg, 2007].
- **Bio-inspired** mutations (e.g., large rearrangements).

Chameleoclust

- **Evolvable** genome structure.
 - Variable number of functional and non-functional elements.
 - Flexible organisation of genes.
- Genome structure inspired by **Pearls-on-a-string evolution** formalism [Crombach and Hogeweg, 2007].
- **Bio-inspired** mutations (e.g., large rearrangements).
 - Modify the genes content and the genome structure.

Chameleoclust

- Evolvable genome structure.
 - Variable number of functional and non-functional elements.
 - Flexible organisation of genes.
- Genome structure inspired by **Pearls-on-a-string evolution** formalism [Crombach and Hogeweg, 2007].
- **Bio-inspired** mutations (e.g., large rearrangements).
 - Modify the genes content and the genome structure.
- Axis-parallel and Clustering-Oriented.

Genotype to Phenotype mapping

Genotype to Phenotype mapping

This genome structure allows to encode different number of clusters described in their own subspaces.

Before mutation $\gamma_i = (1, C_2, D_2, x)$

• Functional \leftrightarrow non-functional (g).

- Functional \leftrightarrow non-functional (g).
- Core-point id (\mathcal{C})

- Functional \leftrightarrow non-functional (g).
- Core-point id (\mathcal{C})
- \bullet Dimension id (\mathcal{D})

- Functional \leftrightarrow non-functional (g).
- Core-point id (\mathcal{C})
- Dimension id (\mathcal{D})
- Contribution (x)

Before mutation

Deletion

Before mutation

After rearrangement

Deletion

Before mutation

After rearrangement

- Deletion
- Duplication

- Deletion
- Duplication

After rearrangement

Before mutation

Fitness computation Assignment Mismatch

- S^t set of **normalized data objects** observed at **generation** t.
- Assign objects in S^t to core-points in phenotype Φ .

Fitness computation Assignment Mismatch

• Manhattan Segmental Distance [Aggarwal et al. 1999]

$$d_{\mathcal{D}}(a,b) = \sum_{i \in \mathcal{D}} rac{|a_i - b_i|}{|\mathcal{D}|}$$

Fitness computation Assignment Mismatch

• Assignment mismatch $\mathcal{E}(o, \mathcal{C})$

- Assign each object $o \in S^t$ to the closest core-point $\mathcal{C} \in \Phi$
- Assignment mismatch $\mathcal{E}(o, \mathcal{C}_i)$.

- Assign each object $o \in S^t$ to the closest core-point $C \in \Phi$
- Assignment mismatch $\mathcal{E}(o, \mathcal{C}_i)$.

- Assign each object $o \in S^t$ to the closest core-point $\mathcal{C} \in \Phi$
- Assignment mismatch $\mathcal{E}(o, \mathcal{C}_i)$.

- Assign each object $o \in S^t$ to the closest core-point $\mathcal{C} \in \Phi$
- Assignment mismatch $\mathcal{E}(o, \mathcal{C}_i)$.

Selection

• Generation t (order Individuals by fitness: Highest rank \rightarrow best): $\Gamma_{10} < \Gamma_3 < \Gamma_4 < \Gamma_{12} < \Gamma_2 < \Gamma_{13} < \Gamma_{13} < \Gamma_{19} < \Gamma_8 < \Gamma_{11} < \Gamma_7 < \Gamma_0 < \Gamma_{15} < \Gamma_{17} < \Gamma_9 < \Gamma_{14} < \Gamma_6 < \Gamma_1 < \Gamma_5 < \Gamma_{16} < \Gamma_{16$

• Exponential ranking selection:

• Mutate children \rightarrow Generation **t+1**:

Evaluating the evolutionary algorithm

- Compare Chameleoclust to state-of-the-art algorithms.
- Reference evaluation framework [Müller et al. VLDB 2009]:
 - 7 real benchmark datasets:
 - shape, pendigitis, liver, glass, breast, diabetes, vowel
 - 16 synthetic benchmark datasets with different:
 - Nb. of dimensions: D05, D10, D15, D20, D25, D50, D75.
 - Nb. of objects: S1500, S2500, S3500, S4500, S5500.
 - Percentage of noise objects: N10, N30, N50, N70.

Evolution of the organisms

- 10 runs over each dataset.
- Mean \pm Standard deviation.

Functional ratio

Results : Real data (e.g., Shape dataset)

		CLIQUE	DOC	MINECLUS	SCHISM	SUBCLU	FIRES	INSCY	PROCLUS*	P3C*	STATPC*	Chameleoclust*
Accuracy	max	0.76	0.79	0.79	0.74	0.70	0.51	0.76	0.72	0.61	0.74	0.8
	min	0.76	0.54	0.60	0.49	0.64	0.44	0.48	0.71	0.61	0.74	0.71
SubspaceCE	max	0.01	0.56	0.58	0.10	0.00	0.20	0.18	0.25	0.14	0.45	0.54
	min	0.01	0.38	0.46	0.00	0.00	0.13	0.16	0.18	0.14	0.45	0.49
NumClusters	max	486	53	64	8835	3468	10	185	34	9	9	14
	min	486	29	32	90	3337	5	48	34	9	9	10
AvgDim	max	3.3	13.8	17.0	6.0	4.5	7.6	9.8	13.0	4.1	17	12.4
	min	3.3	12.8	17.0	3.9	4.1	5.3	9.5	7.0	4.1	17	10.8
RunTime	max	235	2E+06	46703	712964	4063	63	22578	593	140	250	462
	min	235	86500	3266	9031	1891	47	11531	469	140	171	252

- Algorithms belonging to the **Axis-parallel cluster-oriented** family (*).
- **Competitive** performances with respect to other algorithms.
- Good compromise between the different evaluation measures.
Results: Real datasets

Average ranks (\star)

- Ranks of the algorithms regarding different quality measures (Accuracy, Subspace CE, F₁, Entropy, RNIA, Coverage, NumClusters, AvgDim, RunTime) for the **7 real datasets**.
- Competitive performances and good compromise.

Results: Synthetic datasets

- 16 synthetic datasets.
- True number of clusters = 10.
- Best quality = 1.
- Good compromize between the number of clusters found and the quality.

Results: Impact of non-functional tuples

• Positive impact of non-functional elements.

Outline

1 Introduction

- Subspace Clustering
- Clustering of data streams
- Evolutionary Algorithms
- Algorithms and Results
 Chameleoclust
 - SubMorphoStream

3 Application

- EvoMove: Musical personal companion
- ④ Conclusion and perspectives

- Cluster-oriented subspace clustering of data streams.
- More conceptual representation based on tandem arrays.
- Bio-inspired operators adapted to changing environments.

- Cluster-oriented subspace clustering of data streams.
- More conceptual representation based on tandem arrays.
- Bio-inspired operators adapted to changing environments.
 - Amplification and Deamplification.

- Cluster-oriented subspace clustering of data streams.
- More conceptual representation based on tandem arrays.
- Bio-inspired operators adapted to changing environments.
 - Amplification and Deamplification.
 - Exogenous genetic uptake

• Γ : bag of **tandem arrays** $\gamma_{\mathcal{C},\mathcal{D}}$.

• Genes in $\gamma_{\mathcal{C},\mathcal{D}}$ contribute to core-point \mathcal{C} along dimension \mathcal{D}

- Genes are **not** encoded explicitly.
- Assumption: contributions follow a gaussian distribution.

Genotype to Phenotype mapping

- $\gamma_{C,D}^{size}$: Size of the tandem array (number of genes).
- $\gamma_{\mathcal{C},\mathcal{D}}^{mean}$: Mean contribution: $\gamma_{\mathcal{C}_2,\mathcal{D}_2}^{mean}$ (core-point locations).
- $\gamma_{\mathcal{C},\mathcal{D}}^{var}$: Variance of the contributions.

Yс, D

•
$$\gamma_{\mathcal{C},\mathcal{D}} = \langle \gamma_{\mathcal{C},\mathcal{D}}^{\text{size}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} \rangle$$

Mutational operators Amplification/Deamplifications

•
$$\gamma_{\mathcal{C},\mathcal{D}} = \langle \gamma_{\mathcal{C},\mathcal{D}}^{\text{size}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} \rangle$$

•
$$\Delta = \langle {}^{\Delta}\gamma^{\text{size}}_{\mathcal{C},\mathcal{D}}, {}^{\Delta}\gamma^{\text{mean}}_{\mathcal{C},\mathcal{D}}, {}^{\Delta}\gamma^{\text{var}}_{\mathcal{C},\mathcal{D}} \rangle$$

Mutational operators Amplification/Deamplifications

•
$$\gamma_{\mathcal{C},\mathcal{D}} = \langle \gamma_{\mathcal{C},\mathcal{D}}^{\text{size}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} \rangle$$

•
$$\Delta = \langle {}^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}}, {}^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{\textit{mean}}, {}^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{\textit{var}} \rangle$$

• Uniform number of Deleted

$${}^{\Delta}\gamma^{size}_{\mathcal{C},\mathcal{D}} \sim \mathcal{U}(\{-\gamma^{size}_{\mathcal{C},\mathcal{D}}, \dots, -1\})$$

Deamplification

Mutational operators Amplification/Deamplifications

•
$$\gamma_{\mathcal{C},\mathcal{D}} = \langle \gamma_{\mathcal{C},\mathcal{D}}^{\text{size}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}}, \gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} \rangle$$

•
$$\Delta = \langle {}^{\Delta}\gamma^{\rm size}_{\mathcal{C},\mathcal{D}}, {}^{\Delta}\gamma^{\rm mean}_{\mathcal{C},\mathcal{D}}, {}^{\Delta}\gamma^{\rm var}_{\mathcal{C},\mathcal{D}} \rangle$$

• Uniform number of deleted or duplicated elements ${}^{\Delta}\gamma^{size}_{\mathcal{C},\mathcal{D}} \sim \mathcal{U}(\{-\gamma^{size}_{\mathcal{C},\mathcal{D}},\ldots,-1\} \cup \{\gamma^{size}_{\mathcal{C},\mathcal{D}},\ldots,1\})$ Deamplification

- $\gamma_{\mathcal{C},\mathcal{D}} = \langle \gamma_{\mathcal{C},\mathcal{D}}^{size}, \gamma_{\mathcal{C},\mathcal{D}}^{mean}, \gamma_{\mathcal{C},\mathcal{D}}^{var} \rangle$
- $\bullet \ \Delta = \langle {}^{\Delta} \gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}}, {}^{\Delta} \gamma_{\mathcal{C},\mathcal{D}}^{\textit{mean}}, {}^{\Delta} \gamma_{\mathcal{C},\mathcal{D}}^{\textit{var}} \rangle$
 - Uniform number of deleted or duplicated elements $^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{size} \sim \mathcal{U}(\{-\gamma_{\mathcal{C},\mathcal{D}}^{size}, \ldots, -1\} \cup \{\gamma_{\mathcal{C},\mathcal{D}}^{size}, \ldots, 1\})$ Deamplification *Deamplification*
 - Mean of a sample of normally distributed values. ${}^{\Delta}\gamma^{mean}_{\mathcal{C},\mathcal{D}} \sim \mathcal{N}(\gamma^{mean}_{\mathcal{C},\mathcal{D}}, \frac{\gamma^{v}_{\mathcal{C},\mathcal{D}}}{|\Delta\gamma^{v}_{\mathcal{C},\mathcal{D}}|})$

- $\gamma_{\mathcal{C},\mathcal{D}} = \langle \gamma_{\mathcal{C},\mathcal{D}}^{size}, \gamma_{\mathcal{C},\mathcal{D}}^{mean}, \gamma_{\mathcal{C},\mathcal{D}}^{var} \rangle$
- $\bullet \ \Delta = \langle {}^{\Delta} \gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}}, {}^{\Delta} \gamma_{\mathcal{C},\mathcal{D}}^{\textit{mean}}, {}^{\Delta} \gamma_{\mathcal{C},\mathcal{D}}^{\textit{var}} \rangle$
 - Uniform number of deleted or duplicated elements $^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{size} \sim \mathcal{U}(\{-\gamma_{\mathcal{C},\mathcal{D}}^{size}, \ldots, -1\} \cup \{\gamma_{\mathcal{C},\mathcal{D}}^{size}, \ldots, 1\})$ Deamplification *Deamplification*
 - Mean of a sample of normally distributed values. ${}^{\Delta}\gamma^{mean}_{\mathcal{C},\mathcal{D}} \sim \mathcal{N}(\gamma^{mean}_{\mathcal{C},\mathcal{D}}, \frac{\gamma^{vr}_{\mathcal{C},\mathcal{D}}}{|\Delta\gamma^{sr}_{\mathcal{C},\mathcal{D}}|})$
 - Variance of a sample of normally distributed values. ${}^{\Delta}\gamma^{\textit{var}}_{\mathcal{C},\mathcal{D}} \times \frac{(|{}^{\Delta}\gamma^{\textit{size}}_{\mathcal{C},\mathcal{D}}|-1)}{\gamma^{\textit{var}}_{\mathcal{C},\mathcal{D}}} \sim \chi^2_{|{}^{\Delta}\gamma^{\textit{size}}_{\mathcal{C},\mathcal{D}}|-1}$

- Update tandem array: $\gamma_{\mathcal{C},\mathcal{D}} \leftarrow \gamma^*_{\mathcal{C},\mathcal{D}}$
 - **Update** the tandem array size. $\gamma_{\mathcal{C},\mathcal{D}}^{size} = \gamma_{\mathcal{C},\mathcal{D}}^{size} + {}^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{size}$
 - Incremental update of the mean of the contributions. $\gamma_{\mathcal{C},\mathcal{D}}^{mean*} = \frac{1}{\gamma_{\mathcal{C},\mathcal{D}}^{size}} \times \left(\gamma_{\mathcal{C},\mathcal{D}}^{mean} \times \gamma_{\mathcal{C},\mathcal{D}}^{size} + {}^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{mean} \times {}^{\Delta}\gamma_{\mathcal{C},\mathcal{D}}^{size}\right)$
 - Incremental update of the variance of the contributions. $\gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} * = \frac{\gamma_{\mathcal{C},\mathcal{D}}^{\text{size}}}{\gamma_{\mathcal{C},\mathcal{D}}^{\text{size}}} \times (\gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} + (\gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}} - \gamma_{k,d}^{\text{mean}})^2) + \frac{\Delta \gamma_{k,d}^{\text{size}}}{\gamma_{k,d}^{\text{size}}} \times (\Delta \gamma_{\mathcal{C},\mathcal{D}}^{\text{var}} + (\Delta \gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}} - \gamma_{\mathcal{C},\mathcal{D}}^{\text{mean}})^2)$

Genotype

Genotype after mutation

Genotype

Genotype after mutation

- Update tandem array: $\gamma_{\mathcal{C},\mathcal{D}} \leftarrow \gamma^*_{\mathcal{C},\mathcal{D}}$
 - Update the tandem array size. $\gamma_{\mathcal{C},\mathcal{D}}^{size} * = \gamma_{\mathcal{C},\mathcal{D}}^{size} + 1$
 - Incremental update of the mean of the contributions. $\gamma_{\mathcal{C},\mathcal{D}}^{mean*} = \frac{\gamma_{\mathcal{C},\mathcal{D}}^{mean} \times \gamma_{\mathcal{C},\mathcal{D}}^{size} + o'_{\mathcal{D}}}{\gamma_{\mathcal{C},\mathcal{D}}^{size} + 1}$
 - Incremental update of the variance of the contributions.

$$\gamma_{\mathcal{C},\mathcal{D}}^{\textit{var}} * = \frac{\gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}} \times \gamma_{\mathcal{C},\mathcal{D}}^{\textit{var}}}{\gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}} + 1} + \frac{\gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}} \times (\gamma_{\mathcal{C},\mathcal{D}}^{\textit{mean}} - a_{\mathcal{D}}')^2}{(\gamma_{\mathcal{C},\mathcal{D}}^{\textit{size}} + 1)^2}$$

Fitness computation

- Fitness analogous to the one of Chameleoclust.
- Assign each object in window S^t to its closest core-point $C \in \Phi$ (Manhattan distance).
- Sum of distances between data objects and core-points.

Selection

- $(1+\lambda)$ -ES selection scheme.
 - 1 parental organism.
 - λ children.

Evaluating the evolutionary algorithm

- **Compare** SubMorphoStream to the state-of-the-art algorithm HPStream.
- 2 real benchmark datasets (*Network intrusion* and *Forest cover*).
- 6 synthetic benchmark datasets.
 - SynthBaseDyn : Dimensions importance (+).
 - SynthClusterSizeDyn : Cluster sizes.
 - *SynthFeatureDyn* : Dimensions importance (++).
 - SynthClusterNbDyn : Clusters appearing/disappearing.
 - SynthDriftDyn : Clusters drift.
 - SynthFullDyn : All changes at once.

Evolution of the organisms

- Dynamic evolution of the fitness and the genome structure.
- Adaptation to each data stream.

Results: Real datasets

Network Intrusion dataset

• SubMorphoStream is more robust to changes in the stream.

Results: Synthetic dataset (SynthFullDyn)

- Very dynamic data stream:
 - Clusters appearance and disappearance.
 - Clusters drifting.
 - Cluster sizes.
 - Dimensions importance.
- SubMorphoStream exhibits better cluster identification.

Results: Synthetic datasets

	Accuracy		Subspace CE	
	HPStream	SubMorphoStream	HPStream	SubMorphoStream
SynthBaseDyn	0.999 ± 0.004	1.0 ± 0.0	0.3 ± 0.043	0.617 ± 0.099
SynthClusterSizeDyn	1.0 ± 0.0	1.0 ± 0.0	0.318 ± 0.045	0.605 ± 0.101
SynthFeatureDyn	1.0 ± 0.001	1.0 ± 0.0	0.426 ± 0.076	0.597 ± 0.106
SynthClusterNbDyn	0.843 ± 0.099	0.992 ± 0.044	0.488 ± 0.142	0.685 ± 0.104
SynthDriftDyn	0.452 ± 0.122	1.0 ± 0.0	0.105 ± 0.084	0.716 ± 0.035
SynthFullDyn	0.398 ± 0.133	0.997 ± 0.019	0.078 ± 0.088	0.706 ± 0.047

- Not significantly different results.
- Significantly higher results.
- Significantly lower results.

Outline

Introduction

- Subspace Clustering
- Clustering of data streams
- Evolutionary Algorithms
- 2 Algorithms and Results
 - Chameleoclust
 - SubMorphoStream

3 Application

• EvoMove: Musical personal companion

EvoMove System.

EvoMove System.

EvoMove System.

EvoMove System.

- Tested by **professional dancers** (Anou Skan company)
- Presented in **8 performances in dance festivals**: *Meute* performance by the Désoblique dance company.
- Promising feedback from users (Qualitative appreciation).
 - Feel real interaction with the system.
 - Systems reacts to changes in the movements.

Outline

Introduction

- Subspace Clustering
- Clustering of data streams
- Evolutionary Algorithms
- 2 Algorithms and Results
 - Chameleoclust
 - SubMorphoStream

3 Application

• EvoMove: Musical personal companion

Hypothesis

It is possible to **take advantage** of an **evolvable genome structure** to tackle the **subspace clustering** task.

Hypothesis

It is possible to **take advantage** of an **evolvable genome structure** to tackle the **subspace clustering** task.

Conclusion

Incorporating knowledge from evolution:

- Encode different clusters in their own subspaces.
- Adapt to different datasets and dynamic data streams.
- Require minor parameter tuning.
- **Competitive results** with respect to the state-of-the-art techniques.

- Apply: Use SubMorphoStream with the EvoMove application.
- Understand: High degree of freedom → gains in terms of quality and capacities to evolve.
- **Explore**: Potential benefits of the **population** structure (ensemble clustering, temporality).

Supervisors: Christophe Rigotti Guillaume Beslon

European project EvoEvo EU-FET (ICT- 610427) and partners.

LIRIS

INRIA

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES

Landmark window.

 o_1, o_2, \ldots, o_n window

- Sliding window.
- Fading window.
- Tilted time window.

• Landmark window.

 $o_1, o_2, \dots, o_n, o_{n+1}$ window

- Sliding window.
- Fading window.
- Tilted time window.

• Landmark window.

 $o_1, o_2, \ldots, o_n, o_{n+1}, \ldots, o_N$

window

- Sliding window.
- Fading window.
- Tilted time window.

- Landmark window.
- Sliding window.

- Fading window.
- Tilted time window.

- Landmark window.
- Sliding window.
- Fading window.
- Tiltad time inde
- Tilted time window.

- Landmark window.
- Sliding window.

 $o_1, o_2, \ldots, o_n, o_{n+1}, \ldots, o_N$

window

- Fading window.
- Tilted time window.

- Landmark window.
- Sliding window.
- Fading window.
 - At current time *T* objects are **weighted** according to their time stamps *t* (fade exponentially).
 - weight(o_t) = $2^{-\lambda \times (T-t)}$, λ : fading parameter.
- Tilted time window.

- Landmark window.
- Sliding window.
- Fading window.
- Tilted time window.
 - Global picture of the data stream.
 - Fine granularity for recent data and coarse scale for old ones.

$$\dots, o_{n-32}, \dots, o_{n-16}, \dots, o_{n-8}, \dots, o_{n-5}, o_{n-4}, o_{n-3}, o_{n-2}, o_{n-1}, o_n$$

Genome structure

- Binary, Integer and Real encoding.
- Cluster memberships, medoids or centroids are encoded.
- Fixed and variable number of clusters.

Fitness functions

- Algorithms with fixed number of clusters:
 - Sum of intra-cluster distances.
 - Clustering-Oriented family.
- Algorithms with variable number of clusters:
 - Different coefficients (e.g., Silhouette Coefficient).
 - Multi-objective fitness function.

Selection schemes

- Proportional selection scheme.
- Elitist variants.
- Tournament selection.
- $(\mu + \lambda)$ -ES.

Mutational operators

- Cluster-oriented and non-oriented operators.
- Guided and not-guided operators.

Evolutionary Algorithms applied to clustering

Nocea [Sarafis et al. 2007]

- Cell-based approach.
- Rule-based integer encoding.
- Variable number of clusters.
- Subspaces produced a-posteriori.

S-ESC [Vahdat et al. 2013]

- Density-based and Clustering-oriented approach.
- Multiobjective optimization.
- Two populations.
- Rely on a first non-evolutionary stage.

Scalable-ECSAGO [León et al. 2010] ESCALIER [Veloza et al. 2013]

- Clustering-oriented family.
- Sliding window.
- Variable number of clusters.

• No subspace clustering of data streams based on Evolutionary Algorithms.

- S^t set of **normalized data objects** observed at **generation** t.
- Fitness at generation t over a sample $S^t \subseteq S$
- Assign objects in S^t to core-points in phenotype Φ .

•
$$o_1, o_2, \ldots, \dots, o_{|\mathcal{S}|}, o_1, \ldots, x_{|\mathcal{L}|}, \dots$$

 S^1 S^2 S^t

Main features

- Extract core principles from Chameleoclust
- Abstract genotype-phenotype joint representation.
- Simple bio-inspired operators (genes duplication/divergence) using data objects

Results summary

- **Competitive** w.r.t. state-of-the-art algorithms.
- Better results in shorter runtimes.

• Generation t: $F_0 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} F_{16} F_{17} F_{18} F_{19}$

• Ordering individuals by fitness (Highest rank \rightarrow best) $P_{0} < P_{1} < P_{2} < P_{2} < P_{3} < P$

- Generation t:
 - $\begin{array}{c} \mathcal{F}_{0} \quad \mathcal{F}_{1} \quad \mathcal{F}_{2} \quad \mathcal{F}_{3} \quad \mathcal{F}_{4} \quad \mathcal{F}_{5} \quad \mathcal{F}_{6} \quad \mathcal{F}_{7} \quad \mathcal{F}_{8} \quad \mathcal{F}_{9} \quad \mathcal{F}_{10} \quad \mathcal{F}_{11} \quad \mathcal{F}_{12} \quad \mathcal{F}_{13} \quad \mathcal{F}_{14} \quad \mathcal{F}_{15} \quad \mathcal{F}_{16} \quad \mathcal{F}_{17} \quad \mathcal{F}_{18} \quad \mathcal{F}_{19} \\ \mathcal{O}_{1} \quad \mathcal{O}_{1} \quad \mathcal{O}_{2} \quad \mathcal{O}_{1} \quad \mathcal{O}_{2} \quad \mathcal{O}_{1} \quad \mathcal{O}_{2} \quad \mathcalO_{2} \quad \mathcal$
- \bullet Ordering individuals by fitness (Highest rank \rightarrow best)
 - $\begin{array}{c} F_{10} < F_{2} < F_{2} < F_{2} < F_{2} < F_{2} < F_{10} < F_{2} < F_{10} < F$
- Exponential ranking selection:

• Generation t:

- \bullet Ordering individuals by fitness (Highest rank \rightarrow best)
 - $= \begin{array}{c} F_{10} < F_{2} < F_{2} < F_{2} < F_{2} < F_{10} < F_{12} < F_{10} < F_{10}$
- Exponential ranking selection:

 $\mathcal{F}_{17} \mathcal{F}_1$

• Generation t: $F_0 \quad F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \quad F_7 \quad F_8 \quad F_9 \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{10$

• Generation t+1: $P_{17} P_1 P_1 P_1 P_1 P_5 P_5 P_5 P_5 P_5 P_5 P_5 P_1 P_{16} P_{$ • Generation t: $\begin{array}{c} & \begin{array}{c} F_{0} & F_{1} & F_{2} \\ & \end{array} \end{array} \begin{array}{c} F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{9} & F_{10} & F_{11} & F_{12} & F_{13} & F_{14} & F_{15} & F_{16} & F_{17} & F_{18} & F_{19} \\ & \begin{array}{c} & \end{array} \end{array} \begin{array}{c} & \end{array} \end{array} \begin{array}{c} & \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \end{array} \end{array} \end{array} \begin{array}{c} & \end{array} \end{array} \end{array}$

Generation t+1:

• Generation t: $F_0 \quad F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \quad F_7 \quad F_8 \quad F_9 \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{11} \quad F_{12} \quad F_{13} \quad F_{14} \quad F_{15} \quad F_{16} \quad F_{17} \quad F_{18} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{19} \quad F_{10} \quad F_{10$

• Generation t+1: $P_0 P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8 P_9 P_{10} P_{11} P_{12} P_{13} P_{14} P_{15} P_{16} P_{17} P_{18} P_{19}$

• Generation t: F_0 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} F_{16} F_{17} F_{18} F_{19} F_1 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_1 F_1

- Generation t: F_0 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} F_{16} F_{17} F_{18} F_{19} F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_1 F_1
- $(1,\lambda)$ -ES selection scheme:
 - 뭐 뭐 뭐 뭐 뭐 뭐 라 뭐 뭐 뭐 뭐 뭐 뭐 뭐 뭐 뭐 **뭐** 해 뭐 뭐 뭐

• Generation t: \mathcal{F}_0 \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7 \mathcal{F}_8 \mathcal{F}_9 \mathcal{F}_{10} \mathcal{F}_{11} \mathcal{F}_{12} \mathcal{F}_{13} \mathcal{F}_{14} \mathcal{F}_{15} \mathcal{F}_{16} \mathcal{F}_{17} \mathcal{F}_{18} \mathcal{F}_{19} \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7 \mathcal{F}_8 \mathcal{F}_9 \mathcal{F}_1 \mathcal{F}_1

• Generation t+1: $\mathcal{F}_{16} \mathcal{F}_{16} \mathcal{F}_$

- Generation t: \mathcal{F}_0 \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7 \mathcal{F}_8 \mathcal{F}_9 \mathcal{F}_{10} \mathcal{F}_{11} \mathcal{F}_{12} \mathcal{F}_{13} \mathcal{F}_{14} \mathcal{F}_{15} \mathcal{F}_{16} \mathcal{F}_{17} \mathcal{F}_{18} \mathcal{F}_{19} \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7 \mathcal{F}_8 \mathcal{F}_9 \mathcal{F}_1 \mathcal{F}_1
- Generation **t+1**:

- Generation t: \mathcal{F}_0 \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7 \mathcal{F}_8 \mathcal{F}_9 \mathcal{F}_{10} \mathcal{F}_{11} \mathcal{F}_{12} \mathcal{F}_{13} \mathcal{F}_{14} \mathcal{F}_{15} \mathcal{F}_{16} \mathcal{F}_{17} \mathcal{F}_{18} \mathcal{F}_{19} \mathcal{F}_1 \mathcal{F}_2 \mathcal{F}_3 \mathcal{F}_4 \mathcal{F}_5 \mathcal{F}_6 \mathcal{F}_7 \mathcal{F}_8 \mathcal{F}_9 \mathcal{F}_1 \mathcal{F}_1
Time complexity Chameleoclust

- N: Number of individuals.
- D: Dimensionality.
- ω : Number of objects in the sample.
- $|\Gamma|$: Genome size.
- *L_m*: Maximal genome size reached during the rearrangement step.

Fitness computation complexity

$$\mathcal{O}(N \times |\Gamma| \times (D \times \omega + \ln(|\Gamma|)))$$

Reproduction operations complexity

$$\mathcal{O}(N \times (In(N) + |\Gamma| + |\Gamma| \times L_m + L_m))$$

- λ: Number of children.
- D_{max}: Dimensionality of the dataset.
- NbCenters: Number of core points.
- ω : Number of objects in the sample.

Complexity

$\mathcal{O}(\lambda imes \omega imes \textit{NbCenters} imes \textit{D}_{max})$

Time complexity SubMorphoStream

- K: Number of core-points.
- D: Dimensionality.
- λ : Number of children.
- η : Number of evolution generations per data object.
- ω : Genome size.

Reproduction operations complexity

- Exogenous genetic uptake: $\mathcal{O}(\lambda \times \eta \times (K + D))$
- Amplification: $\mathcal{O}(\lambda \times \eta \times D \times K)$

Fitness computation complexity

$$\mathcal{O}(\lambda imes \eta imes \omega imes D imes K)$$

FIGURE 1.1: Toy example to illustrate the *curse of dimensionality*